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ABSTRACT

We prove generalized convergence theorems and Tauberian theorems for

vector-valued functions and sequences of growth order γ − 1 with γ > 0

and for positive functions and sequences in Banach lattices. Then the

general results are applied to obtain some interesting particular Tauberian

results for various examples of operator semigroups. Among them are

mean ergodic theorems for Cesàro-mean-bounded semigroups (discrete

and continuous) of operators and for semigroups of positive operators.
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1. Introduction

Let X be a Banach space, and x : [0,∞) → X be a locally integrable function.

It is well-known that the existence of the Cesàro limit y := limt→∞ t−1
∫ t

0
x(s)ds

implies that the Abel limit limλ↓0 λ
∫ ∞

0 e−λtx(t)dt also exists and equals y. Simi-

larly, if for a sequence {xn}
∞
n=0 ⊂ X the Cesàro limit y := limn→∞ n−1

∑n−1
k=0 xk

exists, then the Abel limit limr↑1(1 − r)
∑∞

n=0 rnxn = y. In general, the exis-

tence of the Abel limit does not guarantee the existence of the Cesàro limit. For

example, it is shown in [6, p. 8] that if xn := 4(−1)n[n/2] − 1 for n ≥ 1, where

[n/2] denotes the largest integer not exceeding n/2, then n−1
∑n

k=1 xk = (−1)n,

but limr↑1(1 − r)
∑∞

n=1 rnxn exists.

The Tauberian theorem of Hardy and Littlewood is a useful tool in summabil-

ity theory and ergodic theory [7, Chap. 18]. It states that if x(·) (resp. {xn}
∞
n=0)

is bounded, or is positive in a Banach lattice, then the existence of the Abel

limit also implies the existence of the Cesàro limit, and the two limits coincide

(cf. [7], [6, Theorem 3.3]). The convergence rate of Cesàro limit and Abel limit

has been an interesting subject. See e.g. [1] and [17]. Recently, in [11], rates of

growth of ‖
∑n

k=1 P kf‖2 for P a Markov operator are used for a central limit

theorem.

The purpose of this paper is to generalize the above convergence theorem

lim
t→∞

t−γ

∫ t

0

x(s)ds and lim
λ↓0

λγ

Γ(γ + 1)

∫ ∞

0

e−λtx(t)dt

(
resp. lim

n→∞
n−γ

n−1∑

k=0

xk and lim
r↑1

(1 − r)γ

Γ(γ + 1)

∞∑

n=0

rnxn

)
.

Section 2 is concerned with convergence theorems for the case γ > −1, Sec-

tion 3 treats Tauberian theorems for functions (resp. sequences) for which

t−γ
∫ t

0
x(s)ds (resp. n−γ

∑n−1
k=0 xk) is bounded and feebly oscillating, and Sec-

tion 4 proves Tauberian theorems for positive functions and positive sequences

in Banach lattices for the case γ ≥ 0. The main results in these three sections

can be summarized as follows:

For γ > −1, if y := limt→∞ t−γ
∫ t

0 x(s)ds (resp. := limn→∞ n−γ
∑n−1

k=0 xk)

exists, then limλ↓0
λγ

Γ(γ+1)

∫ ∞

0 e−λtx(t)dt (resp. limr↑1
(1−r)γ

Γ(γ+1)

∑∞
n=0 rnxn) = y.

When t−γ
∫ t

0
x(s)ds (resp. {n−γ

∑n−1
k=0 xk}) is bounded and feebly oscillating,

or when γ > 0 and ‖x(t)‖ = O(tγ−1)(t → ∞) (resp. ‖xn‖ = O(nγ−1)), or when

γ ≥ 0 and x(·) (resp. {xn}
∞
n=0) is positive in a Banach lattice, the converse

implication is also true.
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Applications of the general results in Sections 2 and 3 to discrete semigroup

{T n} and continuous semigroups {T (t); t ≥ 0} of operators will be given in

Section 5. We obtain convergence theorem (Proposition 5.1) and Tauberian

theorem (Propositions 5.2) between

lim
n→∞

n−α−1
n−1∑

k=0

T kx

(
resp. lim

t→∞
t−α−1

∫ t

0

T (s)xds

)

and

lim
r↑1

(1 − r)α+1

Γ(α + 2)

∞∑

n=0

rnT nx

(
resp. lim

λ↓0

λα+1

Γ(α + 2)

∫ ∞

0

e−λtT (t)xdt

)

for α > −2. Propositions 5.3 and 5.4 present particular properties for the cases

−1 < α < 0 and α = 0, respectively. Section 6 will consist of applications of

the general results in Section 4 to semigroups of positive operators. Proposition

6.1 is a Tauberian theorem dealing with the above limits for α > −1. Proposi-

tion 6.2, a mean ergodic theorem for positive semigroup, is a specialization of

Proposition 6.1 for the case α = 0. We have exhibited nine illustrating examples

scattered in Sections 2, 3, 5, and 6.

A convergence theorem is a special case of a ratio limit theorem (cf. [13]). Nat-

urally, we are interested in generalizing the convergence theorems and Tauberian

theorems in Sections 2 and 4 to ratio limit theorems and ratio Tauberian the-

orems for functions in Banach lattices. Results in this respect will appear in

[21].

2. Cesàro mean convergence implies Abel mean convergence

In this section we deduce Abel mean convergence from Cesàro mean conver-

gence. We first prove the following lemmas.

Lemma 2.1: Suppose h ∈ L1((0,∞)) is piecewise continuous on (0,∞) and has

the property that there are two numbers b > a > 0 such that h is monotonic on

(0, a) and (b,∞). Then

(i)
∑∞

n=1 h(λn) converges absolutely for all λ > 0;

(ii) limλ↓0 λ
∑∞

n=1 |h(λn) −
∫ n+1

n
h(λt)dt| = 0;
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(iii) if f : [0,∞) → X is a bounded step function satisfying f(t) = f([t]) for all

t ≥ 0, then

lim
λ↓0

∥∥∥∥λ

∞∑

n=1

h(λn)f(n) − λ

∫ ∞

0

h(λt)f(t)dt

∥∥∥∥ = 0;

(iv) under the additional assumption that h is positive, if {un}
∞
n=1 ⊂ X con-

verges to u ∈ X , then

lim
λ↓0

∥∥∥∥λ

∞∑

n=1

h(λn)un − λ

∫ ∞

0

h(λt)dt · u

∥∥∥∥ = 0.

Proof: Since |h| has to be non-increasing on [b,∞), (i) follows from the integral

test.

(ii) Since h is monotonic on (0, a), there exists a′ ∈ (0, a) such that |h| is

monotonic on (0, a′). Thus, for 0 < λ < a′/2 we have

λmin{|h(λ)|, |h(2λ)|} ≤

∫ 2λ

λ

|h(t)|dt → 0 as λ ↓ 0

because h ∈ L1((0,∞)). Hence λh(λ) → 0 as λ ↓ 0. This fact will be used later.

Let b′ > b, and let λ > 0 be so small that a′ < ([a′/λ] + 1)λ < a and

b < λ[b′/λ] ≤ b′. Since ([a′/λ] + 1)λ → a′ and ([b′/λ] − 1)λ → b′ as λ ↓ 0, we

have

λ

[b′/λ]−1∑

n=[a′/λ]+1

|h(λn) −

∫ n+1

n

h(λt)dt|

≤λ

[b′/λ]−1∑

n=[a′/λ]+1

(
sup

n≤tn≤n+1
h(λtn) − inf

n≤sn≤n+1
h(λsn)

)

+ (([a′/λ] + 1)λ − a′)
(

sup
a′≤t≤([a′/λ]+1)λ

h(t) − inf
a′≤s≤([a′/λ]+1)λ

h(s)
)

+ (b′ − ([b′/λ] − 1)λ)
(

sup
[b′/λ]λ≤t≤b′

h(t) − inf
[b′/λ]λ≤t≤b′

h(s)
)

=U(Pλ, h) − L(Pλ, h) →

∫ b′

a′

h(t)dt −

∫ b′

a′

h(t)dt = 0 as λ ↓ 0,

where Pλ is the partition {a′, ([a′/λ] + 1)λ, ([a′/λ] + 2)λ, . . . , ([b′/λ]− 1)λ, b′} of

[a′, b′] and U(Pλ, h) and L(Pλ, h) are the upper and lower Riemann sums of h

with respect to Pλ, respectively. Since h is monotonic on (0, a) and (b,∞), and
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since h(λn) → 0 as n → ∞ (by (i)), we obtain that

λ

( [a′/λ]∑

n=1

+
∞∑

n=[b′/λ]

)
|h(λn) −

∫ n+1

n

h(λt)dt|

≤ λ

[a′/λ]∑

n=1

|h(λn) − h(λ(n + 1))| + λ

∞∑

n=[b′/λ]

|(λn) − h(λ(n + 1))|

= λ

∣∣∣∣
[a′/λ]∑

n=1

(h(λn) − h(λ(n + 1)))

∣∣∣∣ + λ

∣∣∣∣
∞∑

n=[b′/λ]

(h(λn) − h(λ(n + 1)))

∣∣∣∣

= λ|h(λ) − h([a′/λ] + 1)λ)| + λ|h([b′/λ]λ)|

≤ λ|h(λ)| + λmax{|h(a)|, |h(a′)|} + λ|h(b)| → 0 as λ ↓ 0.

This proves (ii). (iii) follows from part (ii) directly.

(iv) It follows from (iii) that

lim
λ↓0

|λ

∞∑

n=1

h(λn) − λ

∫ ∞

0

h(λt)dt| = 0.

Hence there is a λ′ > 0 such that |λ
∑∞

n=1 h(λn)| ≤ λ
∫ ∞

0 |h(λt)|dt+1 = ‖h‖1+1

for all λ ∈ (0, λ′). Let ε > 0 be arbitrary. There is an integer N ≥ 1 such that

‖un − u‖ < ε for all n ≥ N . Thus we have for all λ ∈ (0, λ′)
∥∥∥∥λ

∞∑

n=1

h(λn)un−λ

∫ ∞

0

h(λt)dt · u

∥∥∥∥

≤

∥∥∥∥λ

∞∑

n=1

h(λn)(un − u)

∥∥∥∥ +

∣∣∣∣λ
∞∑

n=1

h(λn) − λ

∫ ∞

0

h(λt)dt

∣∣∣∣‖u‖

≤λ

N∑

n=1

|h(λn)|‖un − u‖ + ελ

∞∑

n=N+1

|h(λn)|

+

∣∣∣∣λ
∞∑

n=1

h(λn) − λ

∫ ∞

0

h(λt)dt

∣∣∣∣‖u‖.

Since h is positive and λh(λ) → 0 as λ → 0, with the above estimate this implies

lim sup
λ↓0

∥∥∥∥λ

∞∑

n=1

h(λn)un − λ

∫ ∞

0

h(λt)dt · u

∥∥∥∥ ≤ ε(‖h‖1 + 1).

Since ε > 0 is arbitrary, this shows that

lim
λ↓0

∥∥∥∥λ
∞∑

n=1

h(λn)un − λ

∫ ∞

0

h(λt)dt · u

∥∥∥∥ = 0.
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Lemma 2.2: If a sequence {un}
∞
n=1 ⊂ X converges to u ∈ X , then for all γ > 0

lim
r↑1

(1 − r)γ
∞∑

n=1

rnnγ−1un = Γ(γ)u.

Proof: Let λ = − ln r (0 < r < 1). Then we have

lim
r↑1

λ/(1 − r) = lim
r↑1

(− ln r)/(1 − r) = 1

and so

lim
r↑1

(1 − r)γ
∞∑

n=1

rnnγ−1un = lim
r↑1

(1 − r

λ

)γ

lim
r↑1

λγ
∞∑

n=1

rnnγ−1un

= lim
λ↓0

∞∑

n=1

e−λn(λn)γ−1λun

= lim
λ↓0

λ

∫ ∞

0

e−λt(λt)γ−1dt · u

=

∫ ∞

0

e−ttγ−1dt · u = Γ(γ)u.

Here the third equality follows by applying (iv) of Lemma 2.1 to the function

h(t) = e−ttγ−1.

Proposition 2.3: Let γ > −1 and {xn}
∞
n=0 be a sequence in X . If y :=

limn→∞ n−γ
∑n−1

k=0 xk exists, then

lim
r↑1

(1 − r)γ

Γ(γ + 1)

∞∑

n=0

rnxn = y.

Proof: Let sn :=
∑n−1

k=0 xk for n ≥ 1 and s0 := 0. Under the assumption:

un := n−γsn → y, we have ‖sn‖ = O(nγ) and so
∑

rnsn converges absolutely

for all 0 < r < 1. It follows that
∑∞

n=0 rnxn =
∑∞

n=0 rn(sn+1 − sn) converges

absolutely for all 0 < r < 1. Hence

(1 − r)γ
∞∑

n=0

rnxn = (1 − r)γ

[ ∞∑

n=0

rn(n + 1)γun+1 −

∞∑

n=1

rnnγun

]

=
(1 − r)γ+1

r

∞∑

n=1

rnnγun → Γ(γ + 1)y

as r → 1, by replacing the γ in Lemma 2.2 by γ + 1.

The following proposition is a continuous analog of Proposition 2.3.
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Proposition 2.4: Let γ > −1 and x : [0,∞) → X be a locally integrable

function. If y := limt→∞ t−γ
∫ t

0
x(s)ds exists, then

lim
λ↓0

λγ

Γ(γ + 1)

∫ ∞

0

e−λtx(t)dt = y.

Proof: Let v(t) := t−γ
∫ t

0 x(s)ds. For any ε > 0, there is tε > 0 such that

‖v(t) − y‖ < ε for all t ≥ tε. Using integration by parts, we have
∥∥∥∥

λγ

Γ(γ + 1)

∫ ∞

0

e−λtx(t)dt − y

∥∥∥∥

=

∥∥∥∥
λγ+1

Γ(γ + 1)

∫ ∞

0

e−λt

∫ t

0

x(s)dsdt − y

∥∥∥∥

=

∥∥∥∥
λγ+1

Γ(γ + 1)

∫ ∞

0

e−λttγv(t) − y

∥∥∥∥

≤
λγ+1

Γ(γ + 1)

∫ ∞

0

e−λttγ‖v(t) − y‖dt

≤
λγ+1

Γ(γ + 1)

∫ tε

0

e−λttγ‖v(t) − y‖dt + ε
λγ+1

Γ(γ + 1)

∫ ∞

tε

e−λttγdt

≤
λγ+1

Γ(γ + 1)
tγǫ

∫ tε

0

‖v(t) − y‖dt + ε → ε as λ → 0+.

Since ε > 0 is arbitrary, the conclusion follows.

Applying Proposition 2.3 (resp. Proposition 2.4) to the sequence {xn − y}

(resp. the function x(t) − y), we can deduce the next corollary about the con-

vergence rates of Cesàro mean and Abel mean.

Corollary 2.5: If ‖n−1
∑n−1

k=0 xk − y‖ = o(n−β) (resp. ‖t−1
∫ t

0
x(s)ds − y‖ =

o(t−β)(t → ∞)) for some 0 < β < 2, then also ‖(1 − r)
∑∞

n=0 rnxn − y‖ =

o((1 − r)β)(r ↑ 1) (resp. ‖λ
∫ ∞

0 e−λtx(t)dt − y‖ = o(λβ)(λ ↓ 0).

Remark: The converse of Proposition 2.3 (resp. Proposition 2.4) fails to hold

for any γ ≥ 0. For the case γ > 0, this follows from Proposition 2.8 of [10]. The

following are examples for the cases: γ = 1 and γ = 0.

Example 1: Let X be a Banach space with dim X ≥ 2. It is shown in [6]

and [10, Corollary 2.4] that there exists a Cesàro-mean-bounded operator T

(resp. uniformly continuous C0-semigroup T (·)) on X such that T n/n (resp.

T (t)/t) fails to converge to 0 strongly as n → ∞ (resp. t → ∞). Hence T

(resp. T (·)) is not Cesàro mean ergodic, i.e., there exists an x ∈ X such that

limn→∞ n−1
∑n−1

k=0 T kx (resp. limt→∞ t−1
∫ t

0
T (s)xds) fails to exist (cf. Remark
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(1) under Corollary 2.4 of [10]). But, if we assume that X is reflexive then, by

the Abel mean ergodic theorem (cf. [6, Theorem 2.1]), limr↑1(1−r)
∑∞

n=0 rnT nx

(resp. limλ↓0 λ
∫ ∞

0
e−λtT (t)xdt) exists for all x ∈ X .

Example 2: Let xk = (−1)k, k ≥ 0. Then

(1 − r)0
∞∑

k=0

rkxk =

∞∑

k=0

rk(−1)k =
1

1 + r
→

1

2

as r ↑ 1. On the other hand,

n0
n−1∑

k=0

xk =

{
1 (n = 2l + 1),
0 (n = 2l).

Thus, limn→∞ n0
∑n−1

k=0 xk does not exist.

3. Generalized Tauberian theorems for functions and sequences of

growth order γ − 1

In this section we will show that the converse of Proposition 2.4 is also true

for functions x : [0,∞) → X which satisfy ‖x(t)‖ = O(tγ−1)(t → ∞) (see

Proposition 3.4). We start with the next lemma.

Lemma 3.1: Let h ∈ L1((0,∞)) be such that span{h(λ·); λ > 0} is dense in

L1((0,∞)), and let f ∈ L∞((0,∞), X). If

lim
λ↓0

λ

∫ ∞

0

h(λt)f(t)dt = 0,

then

lim
λ↓0

λ

∫ ∞

0

k(λt)f(t)dt = 0

for every k ∈ L1((0,∞)). The assertion also holds when “λ ↓ 0” is replaced by

“λ ↑ ∞”.

Proof: Let ε > 0 and k ∈ L1((0,∞)) be arbitrary. By the assumption on h,

there are positive numbers c1, c2, . . . , cn and scalars a1, a2, . . . , an ∈ C such that

∫ ∞

0

∣∣∣∣k(t) −
n∑

k=1

akh(ckt)

∣∣∣∣dt ≤ ε.
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Therefore, we have for every λ > 0
∥∥∥∥λ

∫ ∞

0

k(λt)f(t)dt

∥∥∥∥

=

∥∥∥∥
∫ ∞

0

k(t)f(t/λ)dt

∥∥∥∥

≤

∥∥∥∥
∫ ∞

0

[k(t) −

n∑

k=1

akh(ckt)]f(t/λ)dt

∥∥∥∥ +

∥∥∥∥
∫ ∞

0

n∑

k=1

akh(ckt)f(t/λ)dt

∥∥∥∥

≤ ε‖f‖∞ +

n∑

k=1

|ak|

∥∥∥∥λ

∫ ∞

0

h(ckλt)f(t)dt

∥∥∥∥.

Since ε > 0 is arbitrary, by taking λ ↓ 0 we get from the assumption that

lim
λ↓0

λ

∫ ∞

0

k(λt)f(t)dt = 0.

This completes the proof.

Lemma 3.2: Let h ∈ L1((0,∞)) be such that

(∗)

f = 0 a.e. whenever f ∈ L∞((0,∞)) and
∫ ∞

0

h(λt)f(t)dt = 0 for all λ > 0.

Then span{h(λ·); λ > 0} is dense in L1((0,∞)). In particular, the conclusion

holds for the two functions: h1(t) := e−ttγ−1, t ≥ 0; h2(t) := tγ−1χ(0,1](t), with

Reγ > 0.

Proof: The result follows from the fact (L1((0,∞)))∗ = L∞((0,∞)) and the

Hahn-Banach theorem.

To verify condition (*) for h1, let f ∈ L∞((0,∞)) be such that

∫ ∞

0

e−λt(λt)γ−1f(t)dt = 0 for all λ > 0.

Then, using integration by parts we have

∫ ∞

0

e−λt

∫ t

0

sγ−1f(s)dsdt = 0 for all λ > 0.

Since
∫ t

0 sγ−1f(s)ds is exponentially bounded and continuous, it follows from

the uniqueness of Laplace transform that
∫ t

0 sγ−1f(s)ds = 0 for all t ≥ 0. This

implies that f = 0 almost everywhere (cf. [5, Theorem II.2.9]).
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To verify condition (*) for h2, let f ∈ L∞((0,∞)) be such that
∫ ∞

0

h2(λt)f(t)dt = 0 for all λ > 0.

We have for every λ > 0
∫ 1/λ

0
tγ−1f(t)dt = 0. Hence f = 0 a.e.

We are now in a position to prove the following generalized Tauberian theo-

rem. The case γ = 1 is well-known (see [7], [6, Theorem 3.3]).

Proposition 3.3: Let f ∈ L∞([0,∞), X) and let x ∈ X . Then the following

are equivalent:

(a) limλ↓0 λγ
∫ ∞

0 e−λttγ−1f(t)dt = Γ(γ)x for some γ ∈ C with Re γ > 0;

(a’) limλ↓0 λγ
∫ ∞

0 e−λttγ−1f(t)dt = Γ(γ)x for all γ ∈ C with Re γ > 0;

(bn) limn→∞ n−γ
∫ n

0
sγ−1f(s)ds = 1

γ x for some γ ∈ C with Re γ > 0;

(bt) limt→∞ t−γ
∫ t

0
sγ−1f(s)ds = 1

γ x for some γ ∈ C with Re γ > 0;

(bt’) limt→∞ t−γ
∫ t

0 sγ−1f(s)ds = 1
γ x for all γ ∈ C with Re γ > 0;

(c) limλ↓0 λ
∫ ∞

0
k(λt)f(t)dt =

∫ ∞

0
k(t)dt x for all k ∈ L1((0,∞)).

Moreover, if f is feebly oscillating, i.e., ‖f(s) − f(t)‖ → 0 whenever t → ∞

and t/s → 1, then the above conditions are also equivalent to

(d) limt→∞ f(t) = x.

Proof: Since λγ
∫ ∞

0
e−λttγ−1dt = Γ(γ) and t−γ

∫ t

0
sγ−1ds = 1

γ for all λ, t > 0,

we may assume x = 0. “(a’) ⇒ (a)” and “(bt’) ⇒ (bt) ⇒ (bn)” are obvious,

and “(c) ⇒ (a’) + (bt’)” follows by letting k = h1 and k = h2. “(a) ⇒ (c)”

follows from Lemmas 3.1 and 3.2.

(bn) ⇒ (bt). If (bn) holds, then limt→∞[t]−γ
∫ [t]

0
sγ−1f(s)ds = 1

γ x for some

γ ∈ C with Re γ > 0. Since
∣∣∣∣t
−γ

∫ t

0

sγ−1f(s)ds − [t]−γ

∫ [t]

0

sγ−1f(s)ds

∣∣∣∣

≤

∣∣∣∣t
−γ

∫ t

[t]

sγ−1f(s)ds

∣∣∣∣ +

∣∣∣∣(t
−γ − [t]−γ)

∫ [t]

0

sγ−1f(s)ds

∣∣∣∣

≤ t−Re γ · tRe γ−1‖f‖∞ +
∣∣∣
( t

[t]

)−γ

− 1
∣∣∣[t]−Re γ [t]Re γ

Re γ
‖f‖∞ → 0

as t → ∞, we also have limt→∞ t−γ
∫ t

0
sγ−1f(s)ds = 1

γ x.

Finally, we have for every γ ∈ C with Re γ > 0

lim
λ↓0

λ

∫ ∞

0

h2(λs)f(s)ds = lim
λ↓0

λ

∫ 1/λ

0

(λs)γ−1f(s)ds

= lim
t→∞

t−γ

∫ t

0

sγ−1f(s)ds.
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Therefore “(bt) ⇒ (c)” follows from Lemmas 3.1 and 3.2.

“(d) ⇒ (bt)” can be proved easily. That (a) (with γ = 1) implies (d) for the

case that f is feebly oscillating is proved in Theorem 18.3.3 of [7].

The following Tauberian theorem gives the converse of Proposition 2.4.

Proposition 3.4: Let γ > −1 and x: [0,∞) → X be a measurable, locally

integrable function. Suppose t−γ
∫ t

0
x(s)ds is feebly oscillating on (0,∞) and

‖
∫ t

0 x(s)ds‖ = O(tγ)(t → ∞). Then

lim
t→∞

t−γ

∫ t

0

x(s)ds = y

exists if and only if

lim
λ↓0

λγ

Γ(γ + 1)

∫ ∞

0

e−λtx(t)dt = y.

In particular, the conclusion holds when γ > 0 and ‖x(t)‖ = O(tγ−1)(t → ∞).

Proof: We may assume that ‖
∫ t

0 x(s)ds‖ ≤ tγ for all t ≥ 1. Let f(t) = 0 for

0 ≤ t < 1 and f(t) = t−γ
∫ t

0
x(s)ds for t ≥ 1. Then f ∈ L∞([0,∞), X), and f is

feebly oscillating on [0,∞).

Since

lim
t→∞

t−γ

∫ t

0

x(s)ds = lim
t→∞

f(t),

and since

lim
λ↓0

λγ

∫ ∞

0

e−λtx(t)dt = lim
λ↓0

λγ+1

∫ ∞

0

e−λt

∫ t

0

x(s)dsdt

= lim
λ↓0

λγ+1

( ∫ 1

0

+

∫ ∞

1

)(
e−λt

∫ t

0

x(s)ds

)
dt

= lim
λ↓0

λγ+1

∫ ∞

1

e−λt

∫ t

0

x(s)dsdt (by γ + 1 > 0)

= lim
λ↓0

λγ+1

∫ ∞

0

e−λttγf(t)dt,

one can deduce the conclusion from Proposition 3.3 (replacing γ by γ + 1).

Here, if γ > 0 and ‖x(t)‖ = O(tγ−1)(t → ∞), then we may assume that

‖x(t)‖ ≤ tγ−1 for all t ≥ 1. Then for t ≥ 1

∥∥∥∥
∫ t

0

x(s)ds

∥∥∥∥ ≤

∫ 1

0

‖x(s)‖ds +

∫ t

0

sγ−1ds =

∫ 1

0

‖x(s)‖ds +
tγ

γ
,
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and hence γ > 0 implies that ‖
∫ t

0
x(s)ds‖ = O(tγ)(t → ∞). It remains to verify

that the function f , defined by f(t) = 0 for 0 ≤ t < 1 and f(t) = t−γ
∫ t

0
x(s)ds

for t ≥ 1, is feebly oscillating. Indeed, we have for 1 ≤ t < s

‖f(s) − f(t)‖ =

∥∥∥∥s−γ

∫ s

t

rγ−1(r−(γ−1)x(r))dr + (s−γ − t−γ)

∫ t

0

x(r)dr

∥∥∥∥

≤ s−γ

∫ s

t

rγ−1dr + (t−γ − s−γ)

[ ∫ 1

0

‖x(s)‖ds +
tγ

γ

]

= 2
1

γ

[
1 −

( t

s

)γ]
+ (t−γ − s−γ)

∫ 1

0

‖x(s)‖ds,

which tends to zero as t → ∞ and t/s → 1.

Example 3: Let x(t) =

{
−2, 0 ≤ t ≤ 1;
t−3/2, 1 < t < ∞

and γ = −1/2. Then for all t > 0

t−γ

∫ t

0

x(s)ds = t1/2

[∫ 1

0

(−2)ds +

∫ t

1

s−3/2ds

]
= −2.

On the other hand, using L’Hospital’s rule we obtain

lim
λ↓0

λ−1/2

Γ(1/2)

∫ ∞

0

e−λtx(t)dt

= lim
λ↓0

2λ1/2

Γ(1/2)

∫ ∞

0

(−1)e−λttx(t)dt

= lim
λ↓0

2λ1/2

Γ(1/2)

{
2

∫ 1

0

e−λttdt +

∫ 1

0

e−λtt−1/2dt −

∫ ∞

0

e−λtt−1/2dt

}

= lim
λ↓0

2λ1/2

Γ(1/2)
(−1)λ−1/2Γ(1/2) = −2,

which justifies the assertion of Proposition 3.4.

Next, we deduce from Proposition 3.3 its discrete analog. It is easy to see

that the functions h1 and h2 are piecewise continuous on (0,∞) and satisfy

the property that there are two numbers b > a > 0 such that h1 and h2 are

monotonic on (0, a) and (b,∞). Combining Lemma 2.1 and Proposition 3.3, we

obtain the following result.

Proposition 3.5: Let {xn}
∞
n=0 be a bounded sequence in X and let x ∈ X .

Then the following are equivalent:

(a) limr↑1(1 − r)γ
∑∞

n=1 nγ−1rnxn = Γ(γ)x for some γ ∈ C with Re γ > 0;

(a’) limr↑1(1 − r)γ
∑∞

n=1 nγ−1rnxn = Γ(γ)x for all γ ∈ C with Re γ > 0;

(b) limn→∞ n−γ
∑n

k=1 kγ−1xk = 1
γ x for some γ ∈ C with Re γ > 0;
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(b’) limn→∞ n−γ
∑n

k=1 kγ−1xk = 1
γ x for all γ ∈ C with Re γ > 0;

(c) limn→∞ n−1
∑n

k=1 xk = x.

Moreover, if {xn} is feebly oscillating, i.e., ‖xm − xn‖ → 0 whenever n → ∞

and n/m → 1, then the above conditions are also equivalent to

(d) limn→∞ xn = x.

Proof: From the fact that limλ↓0
λ

1−e−λ = 1, it is easy to see that

lim
r↑1

(1 − r)γ
∞∑

n=1

nγ−1rnxn = lim
λ↓0

λγ
∞∑

n=1

nγ−1e−λnxn.

Define f(t) := xn for n ≤ t < n + 1, n = 0, 1, 2, . . .. Then (iii) of Lemma 2.1

implies

lim
λ↓0

λγ
∞∑

n=1

nγ−1e−λnxn = lim
λ↓0

λ

∞∑

n=1

h1(λn)f(n)

= lim
λ↓0

λ

∫ ∞

0

h1(λt)f(t)dt = lim
λ↓0

λγ

∫ ∞

0

tγ−1e−λtf(t)dt

whenever the limit on either side exists, and also

lim
n→∞

n−γ
n∑

k=1

kγ−1xk = lim
n→∞

n−1
n∑

k=1

(k

n

)γ−1

f(k) = lim
n→∞

n−1
∞∑

k=1

h2

(k

n

)
f(k)

= lim
n→∞

n−1

∫ ∞

0

h2

( s

n

)
f(s)ds

= lim
n→∞

n−γ

∫ n

0

sγ−1f(s)ds

whenever the limit on either side exists. Now the equivalence of (a)-(c) follows

from the equivalence of counterparts in Proposition 3.3. “(d) ⇒ (c)” is obvious.

To show “(c) ⇒ (d)” for the case that {xn} is feebly oscillating, let ε > 0 be

arbitrary. There exist nε ∈ N and δ = δε > 0 such that ‖xn − xk‖ ≤ ε for all

nε ≤ n ≤ k ≤ n(1 + δ). Since

1

[nδ]

n+[nδ]∑

k=n+1

xk =
n + [nδ]

[nδ]

1

n + [nδ]

n+[nδ]∑

k=1

xk −
n

[nδ]

1

n

n∑

k=1

xk

=
n

[nδ]

[
1

n + [nδ]

n+[nδ]∑

k=1

xk −
1

n

n∑

k=1

xk

]
+

1

n + [nδ]

n+[nδ]∑

k=1

xk,
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by (c), it converges to 1
δ [x − x] + x = x as n → ∞. Using this fact we conclude

that for n ≥ nε

‖xn − x‖ =

∥∥∥∥
1

[nδ]

n+[nδ]∑

k=n+1

xk − x −
1

[nδ]

n+[nδ]∑

k=n+1

(xk − xn)

∥∥∥∥

≤

∥∥∥∥
1

[nδ]

n+[nδ]∑

k=n+1

xk − x

∥∥∥∥ + ε,

which tends to ε as n → ∞. Since ε is arbitrary, this shows (d).

This completes the proof.

Just like the derivation of Proposition 3.4 from Proposition 3.3, from Propo-

sition 3.5 one can easily deduce the following discrete analog of Proposition 3.4.

It gives the converse of Proposition 2.3.

Proposition 3.6: Suppose the sequence {xn}
∞
n=0 satisfies ‖

∑n−1
k=0 xk‖ =

O(nγ)(n → ∞) and ‖m−γ
∑m−1

k=0 xk − n−γ
∑n−1

k=0 xk‖ → 0 whenever n → ∞

and n/m → 1, where γ > −1. Then

lim
n→∞

n−γ
n−1∑

k=0

xk = y

exists if and only if

lim
r↑1

(1 − r)γ

Γ(γ + 1)

∞∑

n=0

rnxn = y.

In particular, the conclusion holds when γ > 0 and ‖xn‖ = O(nγ−1)(n → ∞).

The next proposition shows that all the limits in Proposition 3.3 become zero

if f belongs to Lq([0,∞), X) with 1 < q < ∞.

Proposition 3.7: Let f ∈ Lq((0,∞), X) with 1 < q < ∞.

(i) If h ∈ Lp[0,∞) where 1
p + 1

q = 1, then

lim
λ↓0

λ1/p

∫ ∞

0

h(λt)f(t)dt = lim
λ→∞

λ1/p

∫ ∞

0

h(λt)f(t)dt = 0.

(ii) In particular, if γ > 1/q, then

lim
λ↓0

λγ−1/q

∫ ∞

0

e−λttγ−1f(t)dt = lim
λ→∞

λγ−1/q

∫ ∞

0

e−λttγ−1f(t)dt = 0,

lim
t→∞

t−γ+1/q

∫ t

0

sγ−1f(s)ds = lim
t↓0

t−γ+1/q

∫ t

0

sγ−1f(s)ds = 0.
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Proof: (i) We define for every λ > 0 a linear operator Fλ : Lq((0,∞), X) → X

by

Fλ(g) := λ1/p

∫ ∞

0

h(λt)g(t)dt for g ∈ Lq[0,∞).

By Hölder’s inequality, we have for every λ > 0 and g ∈ Lq((0,∞), X)

‖Fλ(g)‖ ≤ λ1/p

( ∫ ∞

0

|h(λt)|pdt

)1/p( ∫ ∞

0

‖g(t)‖qdt

)1/q

= ‖h‖p‖g‖q.

Therefore, ‖Fλ‖ ≤ ‖h‖p for all λ > 0.

If g ∈ Lq((0,∞), X) is such that g = 0 a.e. on [b,∞) for some b > 0, then,

since q > 1 implies p < ∞, the integrability of |h|p implies

‖Fλ(g)‖ ≤

( ∫ λb

0

|h(t)|pdt

)1/p( ∫ b

0

||g(t)||qdt

)1/q

→ 0

as λ ↓ 0. Since q < ∞ implies the set of all g ∈ Lq((0,∞), X) such that g = 0 a.e.

on [b,∞) for some b > 0 is dense in Lq((0,∞), X), it follows from the uniform

boundedness of {Fλ; λ > 0} that Fλ(f) → 0 as λ ↓ 0 for all f ∈ Lq((0,∞), X).

This proves the equality limλ↓0 λ1/p
∫ ∞

0
h(λt)f(t)dt = 0.

We can interchange the roles of h ∈ Lp[0,∞) and f ∈ Lq((0,∞), X). Then a

similar argument shows that

lim
λ→∞

λ1/p

∫ ∞

0

h(λt)f(t)dt = lim
µ↓0

µ1/q−1

∫ ∞

0

h(t/µ)f(t)dt

= lim
µ↓0

µ1/q

∫ ∞

0

h(t)f(µt)dt = 0.

(ii) follows by applying (i) to functions

h1(t) = e−ttγ−1 and h2(t) = tγ−1χ(0,1](t),

which belong to Lp[0,∞) when p(γ − 1) > −1, or γ > 1/q.

4. Generalized Tauberian theorems for positive functions and se-

quences in Banach lattices

We first prove the following lemma which will be needed in the proof of our

generalized Tauberian theorem (Proposition 4.2) for positive functions.



124 Y.-C. LI, R. SATO AND S.-Y. SHAW Isr. J. Math.

Lemma 4.1: Let Ω be a nonempty Lebesgue measurable subset of a Euclidean

space Rr, B(Ω) be the σ-field of all Lebesgue measurable sets in Ω, and m be

Lebesgue measure on Rr. Let X be a Banach lattice and let W be a Banach sub-

lattice of L∞(Ω) which contains all constant functions. Suppose F : W → X is

a positive linear operator. Let {Fα} be a net of positive linear operators from

W to X such that

(4.1) lim
α

Fα(g) = F (g),

for all g in a subspace D of W which contains all constant functions. If a

function f ∈ W has the property that there are two bounded sequences {gn}
∞
n=1

and {hn}
∞
n=1 in the closure D of D such that

(4.2) gn ր f and hn ց f a.e. [m]

and

(4.3) F (hn − gn) ց 0,

then limα Fα(f) = F (f).

Proof: Since each Fα is positive, ‖Fα‖ = ‖Fα(1)‖. Since 1 ∈ D, by assumption

we have limα Fα(1) = F (1), which implies that the operators Fα are uniformly

bounded. This fact implies that (4.1) holds for all g in D. For the assumed

function f ∈ W , we have that gn ր f , hn ց f a.e. [m] and F (hn − gn) ց 0.

Since for every n = 1, 2, . . . and for every α

Fα(gn) ≤ Fα(f) ≤ Fα(hn),

we have

Fα(gn) − F (hn) ≤ Fα(gn) − F (f) ≤ Fα(f) − F (f) ≤ Fα(hn) − F (f)

≤ Fα(hn) − F (gn).

Therefore we have ‖Fα(f) − F (f)‖ ≤ ‖Fα(gn) − F (hn)‖ + ‖Fα(hn) − F (gn)‖,

so that

lim sup
α

‖Fα(f) − F (f)‖

≤ lim sup
α

‖Fα(gn) − F (hn)‖ + lim sup
α

‖Fα(hn) − F (gn)‖

≤ ‖F (gn − hn)‖ + ‖F (hn − gn)‖

→ 0 + 0 as n → ∞.

This shows that limα Fα(f) = F (f).
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Remarks: We consider the following two special cases of F in Lemma 4.1,

which will be used in the proof of Proposition 4.2.

(a) Suppose W := L∞(Ω) and F : W → X is a positive operator defined by

the following formula:

F (g) :=

∫

Ω

gdµ · z for g ∈ L∞(Ω),

where z ∈ X is a positive element and µ is an m-continuous finite measure

on B(Ω). If (4.2) holds, then {hn − gn} is a decreasing sequence of positive

elements in L∞(Ω) such that hn−gn ց 0 a.e. [m], then, since µ is m-continuous,

hn − gn ց 0 a.e. [µ]. By Lebesgue’s dominated convergence theorem, we have

F (hn − gn) ց 0. Hence for this F (4.2) always implies (4.3).

(b) Suppose Ω = [0, 1], U := (e−1, 1], W := the Banach lattice consisting

of all those elements g ∈ L∞(Ω) which are continuous on U . If we define

F (g) := g(1)z for g ∈ W , where z ∈ X is a positive element, it is clear that

(4.2) implies (4.3).

Using Lemma 4.1 and the above remark, we prove two Tauberian theorems

(Propositions 4.2 and 4.4) which, like Proposition 3.4 and 3.6, give the con-

verse of Proposition 2.4 and of Proposition 2.3, respectively. For scalar-valued

functions and the case that ν is the ordinary Lebesgue measure m, they are

well-known for the case γ > 0. This can be found in Widder [18, p. 203 and

p. 209].

Proposition 4.2: Let X be a Banach lattice and let ν be an m-continuous

measure on B[0,∞). Let x: [0,∞) → X be a strongly measurable positive X-

valued function on [0,∞) such that
∫ ∞

0
e−λtx(t)ν(dt) exists for small λ > 0

(resp. for sufficiently large λ). For γ ≥ 0, if

lim
λ↓0

λγ

∫ ∞

0

e−λtx(t)ν(dt)

(
resp. lim

λ→∞
λγ

∫ ∞

0

e−λtx(t)ν(dt)

)
= z ∈ X+ exists,

then

lim
t→∞

t−γ

∫ t

0

x(s)ν(ds) =
z

Γ(γ + 1)

(
resp. lim

t↓0
t−γ

∫ t

0

x(s)ν(ds) =
z

Γ(γ + 1)

)
.

Proof: We show only the case that λ ↓ 0; the proof for the case λ → ∞

is similar. Let λ > 0. First notice that since the function e−λt is a home-

omorphism from [0,∞] to [0, 1], we may identify L∞([0, 1]) with the space

L∞([0,∞]) by the mapping L∞([0, 1]) ∋ g(·) → g(e−λ·) ∈ L∞([0,∞]). Since
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0 ≤ |e−λtg(e−λt)x(t)| ≤ ‖g‖∞e−λtx(t) a.e. [ν], the assumption on x implies that

the linear operator Fλ: L∞([0, 1]) → X , defined by

Fλ(g) := λγ

∫ ∞

0

e−λsg(e−λs)x(s)ν(ds) for g ∈ L∞([0, 1]),

is well-defined and is a positive linear operator such that ‖Fλ(g)‖ ≤ ‖g‖∞ ·

‖Fλ(1)‖ for all g ∈ L∞([0, 1]). Thus Fλ(1) → z and ‖Fλ‖ ≤ ‖Fλ(1)‖ → ‖z‖ as

λ ↓ 0. Therefore, we may assume that the operators Fλ are uniformly bounded.

On the other hand, we have for every n = 0, 1, 2, . . .

(4.4)

Fλ(tn) = λγ

∫ ∞

0

e−λs(e−λs)nx(s)ν(ds)

= λγ

∫ ∞

0

e−λ(n+1)sx(s)ν(ds)

= (n + 1)−γF(n+1)λ(1).

First, we assume γ > 0. Let µ be the m-continuous probability measure on

B[0, 1] defined by µ(A) := 1
Γ(γ)

∫ ∞

0
e−sχA(e−s)sγ−1m(ds) for all A ∈ B[0, 1],

and define the positive linear operator F : L∞([0, 1]) → X by

F (g) :=

∫ 1

0

g(t)µ(dt) · z =
1

Γ(γ)

∫ ∞

0

e−sg(e−s)sγ−1m(ds) · z (g ∈ L∞([0, 1])).

By Remark (a) after Lemma 4.1, we have that (4.2) implies (4.3). Since for all

n = 0, 1, 2, . . .

Fλ(tn) =
1

Γ(γ)

∫ ∞

0

e−s(e−s)nsγ−1m(ds) · F(n+1)λ(1)

→
1

Γ(γ)

∫ ∞

0

e−s(e−s)nsγ−1m(ds) · z = F (tn) as λ ↓ 0,

we have limλ↓0 Fλ(p) = F (p) for all polynomials p ∈ L∞([0, 1]).

Next, consider the case γ = 0. It follows from (4.4) that Fλ(tn) → z for all

n = 0, 1, 2, . . .. Hence

lim
λ→0+

Fλ(p) = p(1)z,

for all polynomials p ∈ L∞([0, 1]). Thus if we define F (g) := g(1)z for all g ∈ W ,

where W is the Banach lattice consisting of all elements g ∈ L∞(Ω) which are

continuous on (e−1, 1], then Remark (b) of Lemma 4.1 asserts that (4.2) implies

(4.3).

We have verified that

lim
λ↓0

Fλ(g) = F (g)
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for all g ∈ D := {all polynomials on [0, 1]}. Since D is dense in C[0, 1], and

since the function

f(t) :=

{
0 for 0 ≤ t < e−1;
t−1 for e−1 ≤ t ≤ 1

can be approximated a.e. [m] on [0, 1] and pointwise on (e−1, 1] by increasing

and decreasing sequences of continuous functions, it follows from Lemma 4.1

that

lim
λ↓0

Fλ(f) = F (f) =

{
1

Γ(γ)

∫ ∞

0 e−sf(e−s)sγ−1m(ds) · z for γ > 0

f(1)z for γ = 0

=

{
1

Γ(γ)

∫ 1

0
e−s(e−s)−1sγ−1m(ds) · z for γ > 0

z for γ = 0

=
z

Γ(γ + 1)
.

Since

(4.5)

Fλ(f) = λγ

∫ ∞

0

e−λsf(e−λs)x(s)ν(ds)

= λγ

∫ 1/λ

0

x(s)ν(ds) = t−γ

∫ t

0

x(s)ν(ds)

with t = 1/λ, the proof is complete.

Remarks: (i) The assertion of Proposition 4.2 for the case γ = 0 is also seen by

the following straightforward argument. By assumption, given an ǫ > 0, there

exists δ = δ(ǫ) > 0 such that if 0 < λ ≤ δ then ‖
∫ ∞

0
e−λsx(s)ν(ds) − z‖ < ǫ.

Next there exists a sufficiently large G(δ) > 0 such that

∥∥∥∥
∫ t

0

e−δsx(s)ν(ds) − z

∥∥∥∥ < ǫ for all t ≥ G(δ).

Since

z = lim
µ↓0

( ∫ t

0

+

∫ ∞

t

)
e−µsx(s)ν(ds) =

∫ t

0

x(s)ν(ds) + lim
µ↓0

∫ ∞

t

e−µsx(s)ν(ds),

we have ∫ t

0

e−δsx(s)ν(ds) ≤

∫ t

0

x(s)ν(ds) ≤ z,

and so ∥∥∥∥z −

∫ t

0

x(s)ν(ds)

∥∥∥∥ ≤

∥∥∥∥z −

∫ t

0

e−δsx(s)ν(ds)

∥∥∥∥ < ǫ
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for all t ≥ G(δ). This shows that limt→∞

∫ t

0
x(s)ν(ds) = z.

(ii) If limλ↓0 λγ
∫ ∞

0 e−λtx(t)ν(dt) = z exists for some γ < 0, then one must

have x = 0 a.e. [ν]. To see this let Fλ be the positive operator as defined above.

Then Fλ(1) → z ∈ X+ as λ ↓ 0. By (4.4) we have

0 ≤ (n + 1)−γz = lim
λ↓0

(n + 1)−γF(n+1)λ(1) = lim
λ↓0

Fλ(tn) ≤ lim
λ↓0

Fλ(1) = z,

for all n ≥ 1. Since γ < 0, we must have that z = 0, so that ‖Fλ‖ ≤ ‖Fλ(1)‖ → 0

as λ ↓ 0 and hence, by (4.5), limt→∞ t−γ
∫ t

0
x(s)ν(ds) = 0. Since x(·) is a positive

X-valued function, for any t0 ≥ 0 we have

∥∥∥∥t−γ

∫ t0

0

x(s)ν(ds)

∥∥∥∥ ≤

∥∥∥∥t−γ

∫ t

0

x(s)ν(ds)

∥∥∥∥ → 0

as t → ∞. Since γ < 0, this implies
∫ t

0
x(s)ν(ds) = 0 for all t ≥ 0. It follows

from [5, Corollary 2.2.7] that x(t) = 0 a.e. [ν].

Combining Proposition 4.2 and Proposition 2.4 we get the next corollary.

Corollary 4.3: Let X be a Banach lattice and let x: [0,∞) → X be a strongly

measurable positive X-valued function on [0,∞) such that
∫ ∞

0 e−λtx(t)dt exists

for small λ > 0. Let γ ≥ 0. Then

lim
λ↓0

λγ

∫ ∞

0

e−λtx(t)dt = z

exists if and only if

lim
t→∞

t−γ

∫ t

0

x(s)ds =
z

Γ(γ + 1)
.

From Corollary 4.3, we can deduce its discrete analog as follows.

Proposition 4.4: Let X be a Banach lattice, and {xn}
∞
n=0 be a positive

X-valued sequence. Let γ ≥ 0. Then

z := lim
r↑1

(1 − r)γ
∞∑

n=0

rnxn

exists if and only if

lim
n→∞

n−γ
n−1∑

k=0

xk =
z

Γ(γ + 1)
.

Proof: The “if” part is contained in Proposition 2.3. We now prove the “only

if” part.
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Since limr↑1(− ln r)/(1 − r) = 1, we see, by letting λ = − ln r, that

z = lim
λ↓0

λγ
∞∑

n=0

e−λnxn.

Define x(t) = x[t] for t > 0, where [t] is the largest integer less than or equal to

t. Then, by Corollary 4.3, it suffices to show that

lim
λ↓0

λγ

∫ ∞

0

e−λtx(t)dt = z.

To see this we notice that
∫ ∞

0

e−λtx(t)dt −
∞∑

n=0

e−λnxn =
∞∑

n=0

( ∫ 1

0

(e−λt − 1)dt

)
e−λnxn

=

∞∑

n=0

η(λ)e−λnxn,

where η(λ) :=
∫ 1

0
(e−λt − 1)dt = 1

λ(1 − e−λ) − 1. Since η(λ) ↑ 0 as λ ↓ 0, it

follows that

λγ

∫ ∞

0

e−λtx(t)dt = λγ
∞∑

n=0

e−λnxn + λγ

( ∫ ∞

0

e−λtx(t)dt −
∞∑

n=0

e−λnxn

)

= [1 + η(λ)]λγ
∞∑

n=0

e−λnxn → z,

as λ ↓ 0. This completes the proof.

5. Applications to semigroups with Cesàro means of growth order α

The Cesàro means of a bounded linear operator T and a locally integrable

operator semigroup {T (t); t > 0} on X are the operators

Cn(T ) :=
1

n

n−1∑

k=0

T k, n ≥ 1 and Ct := t−1

∫ t

0

T (s)ds, t > 0,

respectively. The respective Abel means Ar(T ), 0 < r < 1, and Aλ, λ > 0, of T

and {T (t); t > 0} are defined as the following.

For 0 < r < 1 we define Ar(T )x = (1 − r)
∑∞

n=0 rnT nx for x ∈ D(Ar(T )),

where D(Ar(T )) is the set of all x ∈ X for which the series converges. For λ > 0

we define

Aλx = lim
t→∞

λ

∫ t

0

e−λsT (s)xds for x ∈ D(Aλ),
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where D(Aλ) is the set of all x ∈ X for which the limit exists.

We first formulate the following convergence theorem.

Proposition 5.1: Let T be a bounded linear operator (resp. T (·) be a locally

integrable operator semigroup), and let x ∈ X .

(i) For α > −1, if the limit

yx := lim
n→∞

n−αCn(T )x (resp. = lim
t→∞

t−αCtx)

exists, then

lim
r↑1

(1 − r)α

Γ(α + 2)
Ar(T )x

(
resp. lim

λ↓0

λα

Γ(α + 2)
Aλx

)
= yx.

(ii) For α = −1, if the limit yx =
∑∞

n=0 T nx (resp. =
∫ ∞

0
T (s)xds) exists,

then limr↑1

∑∞
n=0 rnT nx (resp. limλ↓0

∫ ∞

0 e−λsT (s)xds) = yx; if the latter

limit exists, then (I − T )yx = x (resp. (I − T (u))yx =
∫ u

0 T (s)xds for all

u > 0).

(iii) For −2 < α < −1, limn→∞ n−αCn(T )x (resp. limt→∞ t−αCtx) exists if

and only if limr↑1
(1−r)α

Γ(α+2)Ar(T )x (resp. limλ↓0
λα

Γ(α+2)Aλx) exists, if and

only if x = 0 (resp. T (·)x ≡ 0). Hence (1−r)α

Γ(α+2)Ar(T ) and {n−αCn(T )}

(resp. λα

Γ(α+2)Aλ and t−αCt) do not converge strongly.

(iv) For 0 < β < 2, if

‖Cn(T )x − zx‖ = o(n−β) (resp. ‖Ctx − zx‖ = o(t−β)(t → ∞)),

then also

‖Ar(T )x − zx‖ = o((1 − r)β)(r ↑ 1)(resp. ‖Aλx − zx‖ = o(λβ)(λ ↓ 0)).

Proof: From Propositions 2.3 and 2.4, and Corollary 2.5 (with γ = α+1) follow

(i), the first part of (ii), the first “only if” part of (iii), and (iv). It remains to

show the rest parts of (ii) and (iii).

Suppose yx = limr↑1
(1−r)α

Γ(α+2)Ar(T )x exists. Let Rr =
∑∞

n=0 rnT n. Then since

(1 − r)αAr(T ) = (1 − r)α+1Rr, we have

lim
r↑1

Rrx =
{

yx if α = −1;
0 if −2 < α < −1

,

so that

x = Rrx − rTRrx →
{

yx − Tyx if α = −1;
0 − T 0 = 0 if −2 < α < −1

as r ↑ 1.
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Similarly, we have

lim
λ↓0

∫ ∞

0

e−λsT (s)xds =
{

yx if α = −1;
0 if −2 < α < −1

.

Then, for all u ≥ 0, by letting Rλx =
∫ ∞

0 e−λsT (s)xds we have

∫ u

0

T (s)xds = lim
λ↓0

∫ u

0

e−λsT (s)xds = lim
λ↓0

[Rλx − e−λuT (u)Rλx]

=

{
yx − T (u)yx if α = −1;
0 − T (u)0 = 0 if −2 < α < −1.

For the case −2 < α < −1, this implies T (·)x ≡ 0 (which is equivalent to x = 0

in case the semigroup is nondegenerate).

Remarks: (i) The above shows that for a semigroup T (·), if −1 < γ < 0 then

the existence of limt→∞ t−γ
∫ t

0
T (s)xds = 0 implies T (·)x ≡ 0. As is shown in

Example 3, this assertion does not hold if T (·)x is replaced by a general function

x(·).

(ii) It can be shown that assertion (iv) of Proposition 5.1 still holds if we

replace the small o’s by big O’s. Moreover, when T is power bounded (resp.

T (·) = e·A is a uniformly bounded C0-semigroup), by a different method the

mean ergodic theorem with rates (cf. [1], [17, p. 293]) shows that for all x ∈

N(T − I) ⊕ R(T − I) (resp. N(A) ⊕ R(A)) and 0 < β ≤ 1

‖Cn(T )x − Px‖ = O(n−β)(resp. o(n−β))

⇔ ‖Ar(T )x − Px‖ = O((1 − r)β)(resp. o((1 − r)β))(r ↑ 1)

and
‖Ctx − Px‖ = O(t−β)(resp. o(t−β))(t → ∞)

⇔ ‖Aλx − Px‖ = O(λβ)(resp. o(λβ))(λ ↓ 0),

where P is the projection onto N(A) along R(A).

From Propositions 3.4 and 3.6 (taking γ = α + 1) and Proposition 5.1 we de-

duce the following generalized Tauberian theorem for semigroups whose Cesàro

means are of growth order α.

Proposition 5.2: Let T be a linear operator (resp. T (·) be a locally integrable

operator semigroup) on X . Then

(i) For α > −2, suppose

‖Cn(T )x‖ = O(nα)(resp. ‖Ctx‖ = O(tα)(t → ∞))
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and {n−αCn(T )x} (resp. t−αCtx) is feebly oscillating, then

yx = lim
n→∞

n−αCn(T )x (resp. lim
t→∞

t−αCtxds)

exists if and only if limr↑1
(1−r)α

Γ(α+2)Ar(T )x (resp. limλ↓0
λα

Γ(α+2)Aλx) = yx.

In case −2 < α < −1, these conditions are also equivalent to that x = 0.

(ii) For α ≥ −1, suppose ‖Cn(T )‖ = O(nα) (resp. ‖Ct‖ = O(tα)(t → ∞))

and {n−αCn(T )} (resp. t−αCt) is strongly feebly oscillating, then P :=

limn→∞ n−αCn(T ) (resp. limt→∞ t−αCtds) exists in the strong operator

topology if and only if limr↑1
(1−r)α

Γ(α+2)Ar(T ) (resp. limλ↓0
λα

Γ(α+2)Aλ) = P

in the strong operator topology. In case α = −1, the existence of the

operator P implies that I − T is invertible and P = (I − T )−1 (resp.

(I − T (u))P =
∫ u

0
T (s)ds for all u > 0).

(iii) For α ≥ −1, suppose ‖Cn(T )‖ = O(nα) (resp. ‖Ct‖ = O(tα)(t → ∞))

and {n−αCn(T )} (resp. t−αCt) is uniformly feebly oscillating, then P :=

limn→∞ n−αCn(T ) (resp. limt→∞ t−αCtds) exists in operator norm if and

only if limr↑1
(1−r)α

Γ(α+2)Ar(T ) (resp. limλ↓0
λα

Γ(α+2)Aλ) = P in operator norm.

In particular, the assertions hold when α > −1 and ‖T n‖ = O(nα) (resp.

‖T (t)‖ = O(tα)(t → ∞)).

Remarks: (i) Proposition 5.2 still holds if the semigroup {T n} (resp. T (·))

is replaced by any sequence {Tn} (resp. function) of operators and Cn(T ) is

replaced by n−1
∑n−1

k=0 Tk. So do Propositions 5.1 and 6.1.

(ii) As shown in the proof of Proposition 3.4, the condition ‖T n‖ = O(nα)

(resp. ‖T (t)‖ = O(tα)(t → ∞)) implies that {n−αCn(T )} (resp. t−αCt) is

bounded and strongly feebly oscillating. For the case α = 0, this means that

power boundedness of T is a sufficient condition for {Cn(T )} (resp. Ct) to be

bounded and strongly feebly oscillating, and for (i) and (ii) to hold for α = 0,

by Proposition 5.2. But it is not a necessary condition. Indeed, although every

Cesàro-mean-ergodic positive matrix on a finite-dimensional space is necessarily

power bounded (cf. [14, Chap. 1, Sec. 3], [2, p. 449]), there is an example of

Cesàro-mean-ergodic operator on a Hilbert space such that ‖T n/n‖ does not

converge to 0 [2, p. 451]. See Remark (ii) after Proposition 6.2 for an exam-

ple of mean ergodic positive operator which is not power bounded but satisfies

‖T n/n‖ → 0. Such operators are not power bounded though {Cn(T )}, as a

strongly convergent sequence, is bounded and strongly feebly oscillating.

Proposition 5.2 is concerned with general asymptotic behavior of Cesàro

means and Abel means of semigroups whose Cesàro means are of growth or-
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der O(tα) for α ≥ −1. In the following, we discuss particular properties for the

three cases: −1 < α < 0; α = 0; α > 0.

Proposition 5.3: Assume that −1 < α < 0. Then the following hold:

(a) If yx = limn→∞ n−αCn(T )x, then Tyx = yx.

(b) If Tx = x(6= 0), then limn→∞ n−α‖Cn(T )x‖ = ∞. Thus

lim
n→∞

n−αCn(T )

does not exist in the strong operator topology if ker(T − I) 6= {0}.

(c) If ‖T nx‖ = O(log n), then

lim
n→∞

n−αCn(T )(x − Tx) = lim
n→∞

n−1−α(x − T nx) = 0.

(d) If limn→∞ ‖T nx‖ = 0, then for every l ≥ 1 we have

lim
n→∞

n1Cn(T )(x − T lx) = x + Tx + · · · + T l−1x.

Proof: (a) Since limn→∞ n1+α = ∞, we have

Tyx = lim
n→∞

n−αCn(T )Tx = lim
n→∞

1

n1+α

( n∑

k=0

T kx − x

)

= lim
n→∞

(n + 1

n

)1+α

(n + 1)−αCn+1(T )x = yx.

Thus, if ker(T − I) = {0}, then yx = 0.

(b) We have n−α‖Cn(T )x‖ = ‖n−αx‖, and limn→∞ ‖n−αx‖ = ∞, since

‖x‖ > 0.

(d) Since

n1Cn(T )(x − T lx)

=
n−1∑

k=0

T k(x − T lx)

= (x + Tx + · · · + T l−1x) − (T nx + T n+1x + · · · + T n+l−1x),

the assertion follows from the assumption.

The next is an example for the case −1 ≤ α.

Example 4: Let m ≥ 1 be an integer and N be a nilpotent operator on X with

Nm+1 = 0, Nm 6= 0. Let α ≥ −1 and define T := N . Then we have

‖n−αCn(T )‖ = n−α−1

∥∥∥∥
n−1∑

k=0

T k

∥∥∥∥ = n−α−1

∥∥∥∥
m∑

k=0

T k

∥∥∥∥ ≤

∥∥∥∥
m∑

k=0

T k

∥∥∥∥
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for all n ≥ m + 1,

lim
n→∞

n−αCn(T ) =

{∑m
k=0 T k for α = −1;

0 for α > −1,

and

lim
r↑1

(1 − r)αAr(T ) = lim
r↑1

(1 − r)α+1
∞∑

k=0

rkT k = lim
r↑1

(1 − r)α+1
m∑

k=0

rkT k

=

{∑m
k=0 T k for α = −1;

0 for α > −1.

This justifies Proposition 5.2 for every α ≥ −1.

We now formulate the following mean ergodic theorem for Cesàro bounded

semigroups, as an illustration of application of Proposition 5.2 for the case α = 0,

Proposition 5.4: Let T be a linear operator (resp. T (·) = e·A be a C0-

semigroup of operators) on X .

(i) If {Cn(T )} (resp. Ct) is bounded, then the operator Pa, defined by Pax :=

limr↑1 Ar(T )x (resp. limλ↓0 Aλx), is a projection with range R(Pa) =

N(T − I) (resp. N(A)), null space N(Pa) = R(T − I)(resp. R(A)) and

domain

D(Pa) = N(T − I) ⊕ R(T − I)

= {x ∈ X ; ∃{rn} ↑ 1 s.t. w- lim
n→∞

Arn
(T )x exists}

(resp. = N(A) ⊕ R(A) = {x ∈ X ; ∃{λn} ↓ 0 s.t. w- lim
n→∞

Aλn
x exists}).

(ii) If {Cn(T )} (resp. Ct) is bounded and strongly feebly oscillating, the fol-

lowing statements hold:

(a) limn→∞ Cn(T )x (resp. limt→∞ Ctx) exists if and only if

lim
r↑1

Ar(T )x (resp. lim
λ↓0

Aλx)

exists, and they are equal. Thus T (resp. T (·)) is Cesàro-mean-

ergodic if and only if it is Abel-mean-ergodic.

(b) The operator Pc, defined by

Pcx := lim
n→∞

Cn(T )x (resp. lim
t→∞

Ctx),
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coincides with Pa. Moreover, we have

D(Pc) = {x ∈ X ; ∃y ∈ N(T − I) and {xn} ⊂ co{T nx; n ≥ 0}

s.t. w- lim
n→∞

xn = y}

(resp. = {x ∈ X ; ∃y ∈ N(A) and {xn} ⊂ co{T (t)x; t ≥ 0}

s.t. w- lim
n→∞

xn = y}).

(c) If X is reflexive, then T (resp. T (·)) is Cesàro-mean-ergodic and

Abel-mean-ergodic.

Proof: (i) The boundedness of {Cn(T )} (resp. {Ct; t > 0}) implies the bound-

edness of {Ar(T ); 0 < r < 1} (resp. {Aλ; λ > 0}) [10, Proposition 3.1]. Since

Ar(T ) = (1 − r)(1 − rT )−1 =
1 − r

r

(1 − r

r
− (T − I)

)−1

and

(T − I)Ar(T ) =
1 − r

r
Ar(T ) −

1 − r

r
I → 0

as r ↑ 1, (i) follows from the mean ergodic theorem for resolvent (cf. [19,

pp. 217–218]) or from the abstract ergodic theorem (Theorem 1.1 in [15]).

(a) of (ii) follows from Proposition 5.2. (b) follows from (i), (a), and the fact

that

x = y+(x−y) = y−w- lim
n→∞

(xn−x) ∈ N(T −I)⊕R(T − I) = D(Pa) = D(Pc).

Finally, since {Ar(T )x; 0 < r < 1} (resp. {Aλx; λ > 0}) is bounded for all

x ∈ X and X is reflexive, (c) follows from (i) and (a).

Study on asymptotic behavior of unbounded semigroups, i.e., for the case

α > 0, can be found in [9]. The next is an example for the case α > 0.

Example 5: Let α = m ≥ 1 and define the operator T = I + N and the

uniformly continuous C0-semigroup T (t) := etN =
∑m

k=0
tk

k! N
k for t ≥ 0, where

N is the nilpotent operator in Example 4.

We have

T n = (I + N)n =

m∑

k=0

(
n

k

)
Nk =

m∑

k=0

n!

k!(n − k)!
Nk,

and thus

n−αT n = n−α
α∑

k=0

n!

k!(n − k)!
Nk −→

1

α!
Nα as n → ∞.



136 Y.-C. LI, R. SATO AND S.-Y. SHAW Isr. J. Math.

Hence it follows that ‖T n‖ = O(nα). On the other hand, since

Ar(T ) = (1 − r)
∞∑

n=0

rn
α∑

k=0

(
n

k

)
Nk = (1 − r)

α∑

k=0

[ ∞∑

n=k

(
n

k

)
rn

]
Nk

= (1 − r)

α∑

k=0

rk(1 − r)−k−1Nk,

we have

(1 − r)αAr(T ) = rαNα +

α−1∑

k=0

rk(1 − r)α−kNk −→ Nα as r ↑ 1,

in operator norm. By using the above Proposition 5.2 (iii) we find that

lim
n→∞

n−αCn(T ) =
Nα

Γ(α + 2)
=

Nα

(α + 1)!

in operator norm.

Also, from the above definition of T (·) we see that ‖T (t)‖ = O(tα)(t → ∞)

and ω0 ≤ 0, and

λαAλ = λα+1

∫ ∞

0

e−λt
α∑

k=0

tk

k!
Nkdt =

α∑

k=0

λα−kNk −→ Nm as λ ↓ 0,

in operator norm. Thus by the above Proposition 5.2 (iii) we find that

lim
t→∞

t−αCt =
Nα

Γ(α + 2)
=

Nα

(α + 1)!

in operator norm.

Remark: If we choose the above operator N to be a nilpotent positive operator

on a Banach lattice, then the above two examples also serve as illustrating

examples of Proposition 6.1 for cases α ≥ −1 and α > 0, respectively.

The next example shows that the assumption of being feebly oscillating is

essential in Proposition 5.2(i).

Example 6: Let T = −I + N with N a nilpotent operator such that N3 = 0,

N2 6= 0 and such that ‖N‖ < 1. It is known (see the proofs of Propositions 2.3

and 2.8 in [10]) that

‖Cn(T )‖

{
= O(n);
6= O(nα) ∀α ∈ [0, 1),

and ‖T n‖ 6= O(nα)
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for all α ∈ [1, 2),

lim inf
n→∞

‖n−1Cn(T )x‖ ≥
1

2
‖I − T ‖−1‖N2x‖

for all x ∈ X , and ‖Ar(T )‖ ≤ 1 − r for all 0 ≤ r < 1. It follows that

‖(1 − r)Ar(T )‖ ≤ (1 − r)2 → 0 as r ↑ 1 but {n−1Cn(T )x} does not converge to

0 as n → ∞ if N2x 6= 0. Since ‖Cn(T )‖ = O(n), by (i) of Proposition 5.2 one

can assert that {n−1Cn(T )x} is not feebly oscillating. We check this directly in

the following.

Since T is clearly invertible, one can write

n−1Cn(T ) = n−2(I − T )−1[n(I − T )Cn(T )] = n−2(I − T )−1(I − T n)

= n−2(I − T )−1

{
I −

2∑

k=0

(
n

k

)
(−1)n−kNk

}

= (I − T )−1
{ 1

n2
[I − (−1)n] +

1

n
(−1)nN − (−1)n n − 1

2n
N2

}
.

Since n−1
2n N2x → N2x/2 6= 0 and (−1)n is oscillating as n → ∞, clearly

{n−1Cn(T )x} is not feebly oscillating when N2x 6= 0.

Since this T is not a positive operator, this example also shows that without

the assumption of positivity on T the conclusion of Proposition 6.1 below may

fail.

6. Applications to semigroups of positive operators

From Corollary 4.3 and Proposition 4.4 (taking γ = α + 1) we deduce the

following generalized Tauberian theorem for semigroups of positive operators.

Proposition 6.1: Let T be a positive operator (resp. T (·) be a locally inte-

grable semigroup of positive operators) on a Banach lattice. For α ≥ −1, the

following hold.

(i) For positive element x ∈ X ,

yx = lim
n→∞

n−αCn(T )x (resp. = lim
t→∞

t−αCtxds)

exists if and only if limr↑1
(1−r)α

Γ(α+2)Ar(T )x (resp. limλ↓0
λα

Γ(α+2)Aλx) = yx.

(ii) P := limn→∞ n−αCn(T ) (resp. limt→∞ t−αCtds) exists in the strong oper-

ator topology if and only if limr↑1
(1−r)α

Γ(α+2)Ar(T ) (resp. limλ↓0
λα

Γ(α+2)Aλ) =

P in the strong operator topology.
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(iii) P := limn→∞ n−αCn(T ) (resp. limt→∞ t−αCtds) exists in operator norm

if and only if limr↑1
(1−r)α

Γ(α+2)Ar(T ) (resp. limλ↓0
λα

Γ(α+2)Aλ) = P in operator

norm.

In the following we present some applications of Proposition 6.1. First, using

Proposition 6.1 (with α = 0), we can prove the following mean ergodic theorem

(cf. [6, Theorems 4.2 and 4.10] about (iii)) for semigroups of positive operators

on Banach lattices.

Proposition 6.2: Let T be a positive operator (resp. T (·) = e·A be a C0-

semigroup of positive operators) on a Banach lattice X .

(i) For positive element x ∈ X , limn→∞ Cn(T )x (resp. limt→∞ Ctx) exists if

and only if limr↑1 Ar(T )x (resp. limλ↓0 Aλx) exists, and they are equal.

Thus T (resp. T (·)) is Cesàro-mean-ergodic if and only if T (resp. T (·)) is

Abel-mean-ergodic.

(ii) If T (resp. T (·)) is Abel-mean-bounded, then the operator P , defined by

Px := lim
n→∞

Cn(T )x = lim
r↑1

Ar(T )x (resp. := lim
t→∞

Ctx = lim
λ↓0

Aλx),

is a linear projection with range R(P ) = N(T−I) (resp. N(A)), null space

N(P ) = R(T − I)(resp. R(A)) and domain

D(P ) = N(T − I) ⊕ R(T − I)

= {x ∈ X ; ∃{rn} ↑ 1 s.t. w- lim
n→∞

Arn
(T )x exists}

= {x ∈ X ; ∃y ∈ N(T − I) and

{nk} → ∞ s.t. w- lim
k→∞

Cnk
(T )x = y}

(resp. = N(A) ⊕ R(A) = {x ∈ X ; ∃{λn} ↓ 0 s.t. w- lim
n→∞

Aλn
x exists}

= {x ∈ X ; ∃y ∈ N(A) and {tn} → ∞ s.t. w- lim
n→∞

Ctn
x = y}).

(iii) In the case that X is reflexive, the following conditions are equivalent:

(a) T (resp. T (·)) is Abel-mean-bounded;

(b) T (resp. T (·)) is Cesàro-mean-bounded;

(c) T (resp. T (·)) is Abel-mean-ergodic;

(d) T (resp. T (·)) is Cesàro-mean-ergodic.

Proof: (i) follows from Proposition 6.1. By the same argument in the proof

of (i) of Proposition 5.4, (ii) follows from (i) and the mean ergodic theorem for

resolvent (cf. [19, p. 217–218]).
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(iii) ((d) ⇒ (b)) is obvious, and ((b) ⇒ (a)) is well known to be true in any

Banach space (cf. [20], [10, Propositions 2.1]). ((c) ⇔ (d)) is contained in (i).

Finally, ((a) ⇒ (c)) follows from (ii) and the reflexivity of X .

The proof is complete.

Remarks: (i) The assertion (iii) of Proposition 6.2 holds in particular when X is

a Lebesgue space Lp(µ), 1 < p < ∞. If µ is a finite measure, and if {T n; n ≥ 1}

(resp. T (·)) is a discrete semigroup (resp. a locally integrable semigroup) of

positive operators on L1(µ) as well as on L∞(µ) such that

sup
0<r<1

sup{‖Ar(T )f‖1/‖f‖1; f ∈ L1(µ)} < ∞ and

sup
0<r<1

sup{‖Ar(T )f‖∞/‖f‖∞; f ∈ L∞(µ)} < ∞

(resp. sup
0<λ<1

sup{‖Aλf‖1/‖f‖1; f ∈ L1(µ)} < ∞ and

sup
0<λ<1

sup{‖Aλf‖∞/‖f‖∞; f ∈ L∞(µ)} < ∞),

then T (resp. T (·)) is Abel-mean-ergodic on L1(µ) (cf. [16, Lemma 3]), and hence

also Cesàro-mean-ergodic on L1(µ), by Proposition 6.1. Moreover, since now

T (resp. T (·)) is Cesàro-mean-bounded on L1(µ) and on L∞(µ), in addition to

the L1-norm convergence, limn→∞ Cn(T )f (resp. limt→∞ Ctf) exists µ-almost

everywhere for all f ∈ L∞(µ)(⊂ L1(µ)) (cf. [12]), although the f ∈ L∞(µ) here

cannot be replaced by f ∈ L1(µ) (cf. [3]).

(ii) In [3] there is an example of positive operator T on Lp (1 ≤ p < ∞)

such that sup{‖n−1
∑n−1

k=0 T k‖; n ≥ 1} ≤ 3, sup{‖T n‖; n ≥ 1} = ∞ (see [3],

[6, p. 14]), and ‖T n/n‖ → 0 (cf. [2, p. 449]). By (iii) of Proposition 6.2, for

1 < p < ∞, such T is an example of mean ergodic positive operator which is

not power bounded.

(iii) Since

T n/n =
n + 1

n
Cn+1(T )−Cn(T ) (resp. t−1T (t)

∫ s

0

T (u)du =
t + s

t
Ct+s −Ct),

it can be deduced from Proposition 6.2 that any Abel-mean-bounded positive

operator T (resp. positive semigroup T (·)) on a reflexive Banach lattice satisfies

the property that T n/n → 0 strongly (resp. t−1T (t)
∫ s

0
T (u)du → 0 strongly as

t → ∞ for all s > 0, which is equivalent to T (t)/t → 0 strongly as t → ∞ in the

case that T (·) is norm-continuous on [0,∞)). The same property is satisfied by

T and T (·) on L1(µ) if they satisfy the condition as described in Remark (i).

However, a nonpositive Cesàro-mean-bounded semigroup on a finite dimensional
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space may not satisfy the property that T n/n → 0 strongly (resp. T (t)/t → 0

strongly as t → ∞), and hence may not be Cesàro-mean-ergodic. See Corollary

2.4(i) of [10] or [6, p. 10].

(iv) ((a) ⇒ (b)) (resp. ((c) ⇒ (d))) also holds for positive operators (resp.

operator functions) on any (not necessarily reflexive) Banach lattice (see [6]).

As remarked previously, Examples 4 and 5 (with N therein being positive)

also explain Proposition 6.1 for the case α ≥ −1 and α > 0. The next is also

an example of application of Proposition 6.1 for the case α > 0.

Example 7: Let α ≥ 1 be an integer. For i ≥ 1, let Xi = L1((i − 1, i]),

and Ni: Xi → Xi be a positive nilpotent contraction operator with N i+1
i = 0,

N i
i 6= 0. Define an operator Ti: Xi → Xi by Ti = I + Ni. Then define operators

N, T : L1((0,∞)) → L1((0,∞)) by

Nf =

∞∑

i=1

Nifi and Tf =

∞∑

i=1

Tifi,

where fi := f · χ(i−1,i] ∈ Xi for i ≥ 1. Then N is a positive contraction on

the Banach lattice X := L1((0,∞)), and T = I + N is a positive operator with

norm ‖T ‖ ≤ 2.

For f ∈ D(Ar) we have (cf. Example 5)

Ar(T )f |(i−1,i] = (1 − r)

i∑

k=0

rk(1 − r)−k−1Nk
i fi.

Thus

(1 − r)αAr(T )f |(i−1,i] = (1 − r)α+1
i∑

k=0

rk(1 − r)−k−1Nk
i fi,

where we see that

(i) if i = α, then (1 − r)α+1
∑i

k=0 rk(1 − r)−k−1Nk
i fi → Nα

α fα as r ↑ 1,

(ii) if i < α, then (1 − r)α+1
∑i

k=0 rk(1 − r)−k−1Nk
i fi → 0 = Nα

i fi as r ↑ 1,

(iii) if i > α, then (1− r)α+1
∑i

k=0 rk(1− r)−k−1Nk
i fi → Nα

i fi as r ↑ 1 if and

only if Nα+1
i fi = 0.

It follows that the limit limr↑1(1 − r)αAr(T )f exists if and only if for each

i ≥ 1 the function fi = f |(i−1,i] satisfies Nα+1
i fi = 0, i.e., Nα+1f = 0; and in

this case we have

lim
r↑1

(1 − r)αAr(T )f = Nαf.

Then, by Proposition 6.1(i)

lim
n→∞

n−αCn(T )f =
1

Γ(α + 2)
Nαf =

Nαf

(α + 1)!
.
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To consider the continuous case, let T (t) := etN =
∑∞

k=0(t
k/k!)Nk for t ≥ 0,

where N is the one defined in the last paragraph. Thus {T (t)} is a C0-semigroup

of positive operators on the Banach lattice X with generator N .

For λ > 0 and f ∈ D(Aλ), writing f =
∑∞

i=1 fi with fi ∈ Xi for all i ≥ 1, we

have

Aλf |(i−1,i] = λ

∫ ∞

0

e−λt
i∑

k=0

tk

k!
Nk

i fidt =

i∑

k=0

λ−kNk
i fi,

where we see that

(i) if i = α, then limλ↓0 λα
∑i

k=0 λ−kNk
i fi = Nα

α fα,

(ii) if i < α, then limλ↓0 λα
∑i

k=0 λ−kNk
i fi = 0 = Nα

i fi,

(iii) if i > α, then limλ↓0 λα
∑i

k=0 λ−kNk
i fi = Nα

i fi if and only if Nα+1
i fi = 0.

Thus, as in the discrete case, we see that the limit limλ↓0 λαAλf exists if and

only if Nα+1f = 0; and in this case we have limλ↓0 λαAλf = Nαf , then, by

Proposition 6.1(i)

lim
t→∞

t−αCtf =
Nαf

Γ(α + 2)
=

Nαf

(α + 1)!
.

In order to get a brief view of the behaviour of the sequence {n−αCn(T )x}

with −1 ≤ α < 0, we give the following examples.

Example 8: Let 0 < β < 1, and let µ be the measure on N = {1, 2, . . .}

defined by µ({n}) = n−β, n ≥ 1. Define T : L1(µ) → L1(µ) by Tf(1) = 0 and

Tf(n) = f(n − 1) for n ≥ 2. Thus, T is a positive linear operator on L1(µ). If

j ≥ 1, then put

Sn(j) :=

∥∥∥∥
n−1∑

k=0

T kχ{j}

∥∥∥∥
1

= ‖χ{j,j+1,...,j+n−1}‖1 =

j+n−1∑

k=j

k−β .

It follows that Sn(j) ≤ n · j−β, and that

Sn(j) ≤ j−β +

∫ j+n−1

j

t−βdt = j−β +
(j + n − 1)1−β − j1−β

1 − β
,

and

Sn(j) ≥

∫ j+n

j

t−βdt =
(j + n)1−β − j1−β

1 − β
.

Hence

(6.1)
(j + n)1−β − j1−β

1 − β
≤ Sn(j) ≤ 1 +

(j + n)1−β − j1−β

1 − β
,
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and furthermore

(6.2)
j

1 − β
((1 + (n/j))1−β − 1) ≤

‖χ{j,j+1,...,j+n−1}‖1

‖χ{j}‖1
≤ n.

Here we use the elementary fact that

(6.3)
(1 + t)1−β − 1

t
≤ 1 − β (t > 0) and lim

t↓0

(1 + t)1−β − 1

t
= 1 − β.

By this, given β̃ with β < β̃ < 1, there exists δ(β̃) > 0 so that 0 < t < δ(β̃)

implies (1 + t)1−β − 1 > (1 − β̃)t. Then, by (6.2), 0 < n/j < δ(β̃) implies

(6.4)
1 − β̃

1 − β
n ≤

‖
∑n−1

k=0 T kχ{j}‖1

‖χ{j}‖1
≤ n.

Proposition 6.3: The positive linear operator T as defined above on L1 sat-

isfies the following properties:

(i) ‖T n‖ = 1 for all n ≥ 1;

(ii) limn→∞ ‖T nf‖1 = 0 for all f ∈ L1, and (T − I)L1(µ) is dense in L1(µ);

(iii) The set M−1 = {f ∈ L1 : limn→∞

∑n
k=0 T kf exists} is a dense subspace

of L1, and M+
−1 = {f ∈ M−1; f ≥ 0} = {0}.

(iv) If −1 < α ≤ −β, then

M+
α := {0 ≤ f ∈ L1 : lim

n→∞
n−αCn(T )f exists} = {0},

and M−1 is a proper subset of the set

Mα = {f ∈ L1 : lim
n→∞

n−αCn(T )f exists},

(v) If −β < α < 0, then the set M+
α is a dense subset of {f ∈ L1 : f ≥ 0},

but M+
α 6= {f ∈ L1 : f ≥ 0}.

Proof: (i) Let xm := mβχ{m}. Since ‖xm‖1 = 1 and ‖T nxm‖1 = ( m
n+m)β → 1

as m → ∞, we have ‖T n‖ = 1 for all n ≥ 1.

(ii) Since the definition of T implies that for every k ∈ N ‖T nχ{k}‖1 =

‖χ{n+k}‖1 = (n + k)−β → 0 as n → ∞, it follows that

‖Pf‖1 = ‖ lim
n→∞

T nf‖1 = 0

for all f ∈ L1(µ). In particular, T n(T − I) → 0 strongly. Then it follows from

the mean ergodic theorem that L1(µ) = N(P ) = R(T − I).
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(iii) Since the functions f = (T −I)g are dense by (ii) and satisfy
∑n

k=0 T kf =

T n+1g − g → −g as n → ∞, also by (ii), we see that M−1 is a dense subspace

of L1(µ). Next, if 0 ≤ f ∈ L1(µ) and f 6= 0, then f(j) > 0 for some j ≥ 1 so

that limn→∞ ‖
∑n

k=0 T kf‖1 ≥ limn→∞ f(j)Sn+1(j) = ∞, by (6.1). Therefore

M+
−1 = {0}.

(iv) Let −1 < α ≤ −β. It follows from (6.1) that

‖n−αCn(T )χ{j}‖1 =
1

n1+α

∥∥∥∥
n−1∑

k=0

T kχ{j}

∥∥∥∥
1

≥
1

n1+α
·
(j + n)1−β − j1−β

1 − β
,

and hence, by 0 < 1 + α ≤ 1 − β, we have

lim sup
n→∞

‖n−αCn(T )χ{j}‖1 ≥
1

1 − β
.

Since ker(T − I) = {0}, it then follows from Proposition 5.3(a) that χ{j} 6∈ Mα.

This shows that

{0 ≤ f ∈ L1(µ) : lim
n→∞

n−αCn(T )f exists} = {0}.

We next prove that M−1 is a proper subspace of Mα. To do this it suffices to

show the existence of a function f in Mα with limn→∞ ‖
∑n

k=0 T kf‖1 = ∞.

Let k1 = 1, and l1 > k1 be the smallest integer satisfying

‖χ{k1,k1+1,...,k1+l1−1}‖1 ≥ 1.

Suppose k1 < l1 < · · · < kn−1 < ln−1 has been determined. Then there exists

k̃n > ln−1 such that b ≥ k̃n implies

(6.5)
1

b1+α

∥∥∥∥
b−1∑

m=0

T m{(χ{k1} − χ{l1}) + · · · + (χ{kn−1} − χ{ln−1})}

∥∥∥∥
1

≤ 2−n.

Next we can take a sufficiently large integer dn > k̃n, with ‖χ{dn}‖1 < 2−n, so

that

(6.6) ‖m−αCm(T )χ{dn}‖1 < 2−n for all m, with 1 ≤ m ≤ k̃n.

Let kn = dn, and ln > kn be the smallest integer satisfying

(6.7) ‖χ{kn,kn+1,...,kn+ln−1}‖1 ≥ 1.

Continuing this process we can determine two strictly increasing sequences {kn}

and {ln} of positive integers, with kn < ln for all n ≥ 1. Then the function

f =
∞∑

n=1

(χ{kn} − χ{ln})



144 Y.-C. LI, R. SATO AND S.-Y. SHAW Isr. J. Math.

is in L1(µ), and satisfies, by (6.5) and (6.6), and (6.7), that

lim
m→∞

‖m−αCm(T )f‖1 = 0, and lim
m→∞

‖

m∑

n=0

T nf‖1 = ∞.

Thus f ∈ Mα \ M−1.

(v) Let −β < α < 0. Since (6.1) implies

‖n−αCn(T )χ{j}‖1 ≤
1

n1+α

{
1 +

(j + n)1−β − j1−β

1 − β

}
,

it follows from 0 < 1 − β < 1 + α that

lim
n→∞

1

n1+α

{
1 +

(j + n)1−β − j1−β

1 − β

}
= 0.

Thus χ{j} ∈ M+
α , where M+

α = {f ∈ Mα : f ≥ 0}. This shows that M+
α is a

dense subset of {f ∈ L1(µ) : f ≥ 0}.

We lastly prove that M+
α is a proper subset of {f ∈ L1(µ) : f ≥ 0}. To do

this, we note by (6.4) that for each n ≥ 1 there correspond two positive integers

sn and tn, with 0 < tn/sn < δ(β̃), so that

(6.8)
‖

∑tn−1
k=0 T kχ{sn}‖1

‖χ{sn}‖1
>

1 − β̃

1 − β
tn > 2nt1+α

n ,

where the last inequality holds when tn is chosen so largely that the inequal-

ity (1 − β̃) > (1 − β)2ntαn is true. Here we may assume that {sn} and {tn}

are strictly increasing sequences. Let wn be a positive real number satisfying

‖wnχ{sn}‖1 = 2−n. Then the function

f =

∞∑

n=1

wnχ{sn}

is a positive function in L1(µ), and satisfies, by (6.8), that

‖t−α
n Ctn

(T )f‖1 ≥
1

t1+α
n

∥∥∥∥
tn−1∑

k=0

T k(wnχ{sn})

∥∥∥∥
1

≥
1

t1+α
n

‖wnχ{sn}‖1

‖
∑tn−1

k=0 T kχ{sn}‖1

‖χ{sn}‖1

≥
1

t1+α
n

· 2−n · 2nt1+α
n = 1 (n ≥ 1).

Hence lim supn→∞ ‖n−αCn(T )f‖1 ≥ 1, and this implies, by Proposition 5.3(a)

and the fact ker(T − I) = {0}, that f 6∈ Mα. The proof is complete.
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Remark: The above proof of M+
α 6= {f ∈ L1(µ) : f ≥ 0} could be replaced

by the following argument: By (ii), I − T is not invertible (but its range is

dense). Hence, by Theorem 2.17 and Proposition 2.1(iii) of Derriennic and Lin

[4], Mα 6= L1(µ). Consequently, M+
α 6= {f ∈ L1(µ) : f ≥ 0}. This argument

was communicated to the authors by the referee.

Example 9: For −1 ≤ α < 0 put β = −α, and let

d1 = 1, and 1 − d2 − · · · − dn = 1/nβ for n ≥ 2.

Thus,

dn =
1

(n − 1)β
−

1

nβ
=

nβ − (n − 1)β

{n(n − 1)}β
,

and so

(6.9)
β

n1+β
=

βnβ−1

n2β
≤ dn ≤

β(n − 1)β−1

(n − 1)2β
=

β

(n − 1)1+β
.

Define a measure µ on N by µ({n}) = dn for n ∈ N. It follows that µ(N) < ∞.

Then define a positive linear operator T on L1(µ) by

(6.10) Tf(n) =





∑∞
k=1 f(k)µ({k}) if n = 1,

0 if n = 2,
f(n − 1) if n ≥ 3.

Proposition 6.4: Let −1 ≤ α < 0. The positive linear operator T on L1

defined above satisfies the following properties:

(i) ‖T n‖ = n + 1 and ‖n−1
∑n−1

k=0 T k‖ = 2−1(n + 1) for all n ≥ 1, and

ker(T − I) = {cχ{1} : c ∈ R};

(ii) {0 ≤ f ∈ L1 : limn→∞ n−αCn(T )f exists} = {0};

(iii) the set M−1 = {f ∈ L1 : limn→∞ n1Cn(T )f exists} is a dense subspace of

L1;

(iv) If −1 < α < 0, then there exists f ∈L1 such that yf = limn→∞ n−αCn(T )f

exists and yf 6= 0.

Proof: (i) It is clear from the definition of T that ker(T − 1) = {cχ{1} : c ∈ R}.

Next, we show that ‖T n‖ = n+1 for all n ≥ 1. Since k ≥ 2 implies ‖T nχ{k}‖1 =

µ({k, k + 1, . . . , k + n}) =
∑n

j=0 dk+j , we have

‖T n‖ ≥ sup
k≥2

1

dk

n∑

j=0

dk+j .
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Here we notice that 1 ≥ dk+j/dk ≥ dk+n/dk for 0 ≤ j ≤ n, and that

lim
k→∞

dk+n/dk = lim
k→∞

{(k + n)β − (k + n − 1)β}

{(k + n)(k + n − 1)}β
·

{k(k − 1)}β

{kβ − (k − 1)β}
= 1.

Hence ‖T n‖ ≥ n + 1. On the other hand, it is clear by the definition of T that

‖T nf‖1 ≤ (n+1)‖f‖1. Therefore, we conclude that ‖T n‖ = n+1. By a similar

argument, we see that

∥∥∥∥n−1
n−1∑

k=0

T k

∥∥∥∥ =
1

n

n∑

k=1

k =
1

n
·
n(n + 1)

2
=

n + 1

2
.

Hence T is not mean ergodic.

(ii) Let 0 ≤ f ∈ L1(µ) and ‖f‖1 > 0. Then limn→∞ ‖Cn(T )f‖1 > 0 exists

(but it may be ∞). In fact, by the definition of T we see that ‖(T nf)χN\{1}‖1 ↓ 0

as n ↑ ∞, and that {T nf(1)}∞n=0 is a positive increasing sequence, so that

limn→∞ T nf(1) exists (but it may be ∞). By using these the existence of

limn→∞ ‖Cn(T )f‖1 ∈ (0,∞] follows. Hence limn→∞ ‖n−αCn(T )f‖1 = ∞ for

all −1 ≤ α < 0. Thus, for every α with −1 ≤ α < 0,

{0 ≤ f ∈ L1(µ) : lim
n→∞

n−αCn(T )f exists} = {0}.

(iii) Let N ≥ 2, and put

(6.11) f = (1 − d2 − · · · − dN−1)χ{1} − χ{N}.

Then

T kf(1) = 1 − d2 − · · · − dN+k−1 =
1

(N + k − 1)β
,

and thus

(6.12)

n−1∑

k=0

T kf(1) =

N+n−2∑

l=N−1

1

lβ
.

Next, let

(6.13) g = (1 − d2 − · · · − dK−1)χ{1} − χ{K},

where we assume that N < K. Then (6.12) implies

n−1∑

k=0

T k(f − g)(1) =

N+n−2∑

l=N−1

1

lβ
−

K+n−2∑

l=K−1

1

lβ
.
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By this,

lim
n→∞

n1Cn(T )(f − g) = lim
n→∞

n−1∑

k=0

T k(f − g) =

( K−2∑

l=N−1

1

lβ

)
χ{1} −

K−1∑

j=N

χ{j}

in L1(µ), i.e., f − g ∈ M−1. Furthermore, by (6.11) and (6.13),

f − g = ((N − 1)−βχ{1} − χ{N}) − ((K − 1)−βχ{1} − χ{K})

= {
1

(N − 1)β
−

1

(K − 1)β
}χ{1} − χ{N} + χ{K},

where µ({n}) = dn ∼ β/n1+β → 0 as n → ∞, by (6.9). This shows that χ{1}

can be approximated in L1(µ) by the functions in M−1 of the form of multiples

of f − g, where f and g are defined by (6.11) and (6.13), respectively. Hence

χ{1} ∈ M−1. Then, using the relation

χ{N} = −(f − g) + {(N − 1)−β − (K − 1)−β}χ{1} + χ{K},

and letting K → ∞, we see that χ{N} ∈ M−1 for all N ≥ 2.

(iv) Suppose −1 < α < 0. Let en :=
∑N+n−2

l=N−1
1
lβ

/
∫ N+n−1

N−1
x−βdx. Since

0 < β = −α < 1, it is easy to see that en → 1 as n → ∞. It follows that the

function f defined in (6.11) satisfies

lim
n→∞

n−αCn(T )f(1) = lim
n→∞

1

n1−β

n−1∑

k=0

T kf(1)

= lim
n→∞

en

∫ N+n−1

N−1
x−βdx

n1−β

= lim
n→∞

(N + n − 1)−β

(1 − β)n−β
=

1

1 − β
.

Since

lim
n→∞

∫

N\{1}

n−1∑

k=0

|T kf |dµ = µ([N,∞)) < ∞,

we get

yf = lim
n→∞

n−αCn(T )f =
1

1 − β
χ{1} (in L1(µ)).

This completes the proof of Proposition 6.4.

Remarks: (i) On the other hand, if f = χ{n} for some n ∈ N, then we have,

by µ(N) = 2 < ∞, that

lim
m→∞

‖T mf − µ({n, n + 1, . . .})χ{1}‖1 = 0
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and so

lim
m→∞

∥∥∥∥
1

m

m−1∑

k=0

T kf − µ({n, n + 1, . . .})χ{1}

∥∥∥∥
1

= 0.

Therefore, M0 := {f ∈ L1(µ) : limn→∞ Cn(T )f exists} is a dense subspace of

L1(µ), and so is the set Mǫ := {f ∈ L1(µ) : limn→∞ n−ǫCn(T )f exists} for all

ǫ ≥ 0. (Notice that from (iii) it follows actually that this is true for all ǫ ≥ −1)

But, now, let 0 < ǫ < 1. Then

∥∥∥∥n−1−ǫ
n−1∑

k=0

T k

∥∥∥∥ = n−ǫ(n + 1)2−1 → ∞ (n → ∞),

so that there exists a function f ∈ L1(µ), with f ≥ 0 and ‖f‖1 > 0, such that

limn→∞
1

n1+ǫ

∑n−1
k=0 T kf does not exist. Lastly, since ‖n−2

∑n−1
k=0 T k‖ = n+1

2 n ≤

1, we see from the above-mentioned result that limn→∞ ‖n−2
∑n−1

k=0 T kf‖1 = 0

for all 0 ≤ f ∈ L1(µ).

(ii) As shown in (i) and (iii) of Proposition 6.4, Example 9 exhibits a positive

operator T on L1 with ‖T n‖ = n + 1 and ‖n−1
∑n−1

k=0 T k‖ = 2−1(n + 1) for all

n ≥ 1, such that limn→∞

∑n
k=0 T kf exists (in particular, limn→∞ ‖T nf‖1 = 0)

for f in a dense subset of L1. In connection with this example, it is interesting

to note here that Kornfeld and Kosek [8] constructed, for any δ ∈ (0, 1), a

mean ergodic positive operator T on L1 with limn→∞ ‖T n‖/n1−δ = ∞, and

showed that the Cesàro-mean-boundedness of a positive L1 operator T implies

‖T n‖ = o(n1−ǫ) for some ǫ > 0.
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